The free energy change required to transport 1 mol of hydrogen ions through these pumps is approximately -35,600 J/mol. The negative sign indicates that the process is exergonic, meaning it releases energy.
To calculate the free energy change
required to transport 1 mol of hydrogen ions through these pumps, you can use the Nernst equation. The Nernst equation relates the free energy change to the concentration difference of the ions across a membrane. The equation is given by:
![\[ \Delta G = -RT \ln\left(\frac{[H^+]_{\text{final}}}{[H^+]_{\text{initial}}}\right) \]](https://img.qammunity.org/2024/formulas/biology/high-school/1k04yco6n25v5p5k9uc4ji0rwmvwutkbag.png)
Where:
-
is the free energy change, -
is the gas constant

-
is the temperature in Kelvin (37 °C = 310 K), -
is the final concentration of hydrogen ions (pH 1.0), and -
is the initial concentration of hydrogen ions (pH 7.0).
First, convert the pH values to hydrogen ion concentrations using the formula:
.
![\[ [H^+]_{\text{final}} = 10^{-\text{pH}_{\text{final}}}](https://img.qammunity.org/2024/formulas/biology/high-school/s99b8zl4vtjpcg8g0hrkit9avjr82u4oqe.png)
![\ [H^+]_{\text{initial}} = 10^{-\text{pH}_{\text{initial}}}](https://img.qammunity.org/2024/formulas/biology/high-school/s2gfuhrylr6cplh2gynwsolv6crp5a9sqo.png)
Substitute these values into the Nernst equation and solve for
:
![\[ \Delta G = -8.314 \, \text{J} \cdot \text{mol}^(-1) \cdot \text{K}^(-1) \cdot 310 \, \text{K} \cdot \ln\left((10^(-1.0))/(10^(-7.0))\right) \]](https://img.qammunity.org/2024/formulas/biology/high-school/a7jc5d79hattied0brfxmjnaqzz974x632.png)
Calculate the numerical value to get the final result for
.
Let's calculate it step by step:
Convert pH values to hydrogen ion concentrations:
![\[ [H^+]_{\text{final}} = 10^{-\text{pH}_{\text{final}}} = 10^(-1.0) \]](https://img.qammunity.org/2024/formulas/biology/high-school/vhodxxukccd6ketvamwg70aqg0jwi6zg1n.png)
![\[ [H^+]_{\text{initial}} = 10^{-\text{pH}_{\text{initial}}} = 10^(-7.0) \]](https://img.qammunity.org/2024/formulas/biology/high-school/oqnjut5oju1vknw7gwmvcvlw8aqr9c471i.png)
Substitute these values into the Nernst equation:
![\[ \Delta G = -8.314 \, \text{J} \cdot \text{mol}^(-1) \cdot \text{K}^(-1) \cdot 310 \, \text{K} \cdot \ln\left((10^(-1.0))/(10^(-7.0))\right) \]](https://img.qammunity.org/2024/formulas/biology/high-school/a7jc5d79hattied0brfxmjnaqzz974x632.png)
Calculate the argument of the natural logarithm:
![\[ \ln\left((10^(-1.0))/(10^(-7.0))\right) = \ln(10^6) = 6 \ln(10) \]](https://img.qammunity.org/2024/formulas/biology/high-school/jzp8b0any5opzgbi71dfazy1yw8rrnqnxu.png)
Use the fact that
:
![\[ \ln(10) \approx 2.3026 \]](https://img.qammunity.org/2024/formulas/biology/high-school/u271ip0xei6pu0s8mitk77wss1863u7tmq.png)
![\[ 6 \ln(10) \approx 6 * 2.3026 \]](https://img.qammunity.org/2024/formulas/biology/high-school/44oho5vhnsm0ehtf2pkj3miowdp15gzlmn.png)
Multiply the result by the remaining constants:
![\[ \Delta G = -8.314 \, \text{J} \cdot \text{mol}^(-1) \cdot \text{K}^(-1) \cdot 310 \, \text{K} \cdot (6 * 2.3026) \]](https://img.qammunity.org/2024/formulas/biology/high-school/wza7zj0z1p6rxbkpfu8573ig4u7pnsznsl.png)
![\[ \Delta G \approx -8.314 \, \text{J} \cdot \text{mol}^(-1) \cdot \text{K}^(-1) \cdot 310 \, \text{K} \cdot 13.8156 \]](https://img.qammunity.org/2024/formulas/biology/high-school/prsbsuiwd8m64lo6rujc3ty68eulum5ppw.png)
Calculate the numerical value:
![\[ \Delta G \approx - 8.314 \, \text{J} \cdot \text{mol}^(-1) \cdot \text{K}^(-1) \cdot 4281.756 \]](https://img.qammunity.org/2024/formulas/biology/high-school/96x3hn2v55o1hn0sakcwp8rb8n7uwn31e7.png)
![\[ \Delta G \approx -35,600 \, \text{J/mol} \]](https://img.qammunity.org/2024/formulas/biology/high-school/6hwalq1sq08hca6f1ddwt3tva6bwnw2bt1.png)