163k views
1 vote
If 37 +5f(x) + 2x² (f(x))³ = 0 and f(4) = -1, find f'(4).

User Tryx
by
9.1k points

1 Answer

1 vote

Answer: f '(4) = 16/101

Explanation:

37 +5f(x) + 2x² (f(x))³ = 0

Take derivative of both sides

0 + 5 * f '(x) + 4x (f ( x))³ + 2xx*3 * (f(x))^2 * f '(x) = 0


5 * f '(x) + 2xx*3 * (f(x))^2 * f '(x) =

- 4x (f ( x))³


[5 + 2xx*3 * (f(x))^2 ] * f '(x) =

- 4x (f ( x))³


[5 + 6xx * (f(x))^2 ] * f '(x) =

- 4x (f ( x))³


f '(x) =

- 4x (f ( x))³ / [5 + 6xx * (f(x))^2 ]


f '(4) = -4*4 f(4)^3 / [5 + 6*4*4*f(4)^2]
f '(4) = -16*-1 / [ 5 + 96 ]
f'(4) = 16/101


from MysticAlanCheng

User Kevin Mei
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories