163k views
1 vote
If 37 +5f(x) + 2x² (f(x))³ = 0 and f(4) = -1, find f'(4).

User Tryx
by
8.7k points

1 Answer

1 vote

Answer: f '(4) = 16/101

Explanation:

37 +5f(x) + 2x² (f(x))³ = 0

Take derivative of both sides

0 + 5 * f '(x) + 4x (f ( x))³ + 2xx*3 * (f(x))^2 * f '(x) = 0


5 * f '(x) + 2xx*3 * (f(x))^2 * f '(x) =

- 4x (f ( x))³


[5 + 2xx*3 * (f(x))^2 ] * f '(x) =

- 4x (f ( x))³


[5 + 6xx * (f(x))^2 ] * f '(x) =

- 4x (f ( x))³


f '(x) =

- 4x (f ( x))³ / [5 + 6xx * (f(x))^2 ]


f '(4) = -4*4 f(4)^3 / [5 + 6*4*4*f(4)^2]
f '(4) = -16*-1 / [ 5 + 96 ]
f'(4) = 16/101


from MysticAlanCheng

User Kevin Mei
by
7.4k points