132k views
2 votes
A fancart of mass 0.8 kg initially has a velocity of < 0.9, 0, 0 > m/s. Then the fan is turned on, and the air exerts a constant force of < -0.2, 0, 0 > N on the cart for 1.5 seconds. 1. What is the change in momentum of the fancart over this 1.5 second interval?(kg*m/s) 2.What is the change in kinetic energy of the fancart over this 1.5 second interval? (J) Thank you it is due tonight!

User Sina Sohi
by
7.7k points

1 Answer

6 votes

Answer:

Change in momentum:
\langle -0.3,\, 0,\, 0\rangle\; {\rm kg \cdot m\cdot s^(-1)}.

Change in kinetic energy: approximately
(-0.2)\; {\rm J}.

Step-by-step explanation:

Change in momentum
\Delta p is equal to the net impulse
J on the object. In order to find the net impulse
J\!, multiply the net force on the object
F_{\text{net} by the duration
\Delta t:


\begin{aligned} J &amp;= F_{\text{net}}\, \Delta t \\ &amp;= (1.5)\, \langle -0.2,\, 0,\, 0\rangle\; {\rm N\cdot s} \\ &amp;= \langle -0.3,\, 0,\, 0\rangle\; {\rm kg \cdot m\cdot s^(-1)} \end{aligned}.

Since the change in momentum is equal to net impulse:


\Delta p = J = \langle -0.3,\, 0,\, 0\rangle\; {\rm kg \cdot m\cdot s^(-1)}.

Divide the change in momentum by mass
m to find the change in velocity
\Delta v:


\begin{aligned}\Delta v &amp;= (\Delta p)/(m) \\ &amp;= (\langle -0.3,\, 0,\, 0\rangle)/(0.8)\; {\rm m\cdot s^(-1)} \\ &amp;\approx \langle -0.375,\, 0,\, 0\rangle\; {\rm m\cdot s^(-1)}\end{aligned}.

Thus, velocity has changed from
u = \langle 0.9,\, 0,\, 0\rangle\; {\rm m\cdot s^(-1)} to:


\begin{aligned} v &amp;= u + \Delta v \\ &amp;= \langle 0.9,\, 0,\, 0\rangle\; {\rm m\cdot s^(-1)} \\ &amp;\quad + \langle -0.375,\, 0,\, 0\rangle\; {\rm m\cdot s^(-1)} \\ &amp;= \langle 0.525,\, 0,\, 0\rangle\; {\rm m\cdot s^(-1)}\end{aligned}.

The initial kinetic energy (a scalar) was:


\begin{aligned}(\text{KE, initial}) &amp;= (1)/(2)\, m\, _(2))^(2) \\ &amp;\approx (1)/(2)\, (0.9^(2))\; {\rm J} \\ &amp;=0.324\; {\rm J}\end{aligned}.

The new kinetic energy would be:


\begin{aligned}(\text{KE}) &amp;= (1)/(2)\, m\,  u\^(2) \\ &amp;\approx (1)/(2)\, (0.525^(2))\; {\rm J} \\ &amp;= 0.11025\; {\rm J}\end{aligned}.

Hence, the change in kinetic energy would be:


\begin{aligned} &amp;(\text{KE}) - (\text{KE, initial}) \\ \approx\; &amp; 0.324\; {\rm J} - 0.11025\; {\rm J}\\ \approx \; &amp; (-0.2)\; {\rm J} \end{aligned}.

User Pierre Mardon
by
7.7k points