Answer:
Step-by-step explanation:
The torque is given by the formula:
τ = F × r × sin(θ)
where τ is the torque, F is the force applied, r is the distance between the force and the pivot point, and θ is the angle between the force and the lever arm.
In this case, the person's weight is the force being applied, and it can be calculated as:
F = m × g
where m is the mass of the person and g is the acceleration due to gravity (9.81 m/s^2).
F = 65 kg × 9.81 m/s^2 = 637.65 N
The distance between the person and the pivot point is 1.5 m, so r = 1.5 m.
The angle between the person's weight and the lever arm is 90 degrees, so sin(θ) = 1.
Therefore, the torque the person is exerting on the board is:
τ = F × r × sin(θ) = 637.65 N × 1.5 m × 1 = 956.475 N·m
So the person is exerting a torque of 956.475 N·m on the diving board with respect to the pivot point.