161k views
4 votes
What is 3x^4-73x^2-50 factored

1 Answer

3 votes

Answer:

(3x - 10)(x - 5)

Explanation:

That expression is equal to (3x^4 -73x^2 - 50). This factored expression can be written as (3x^2 -17x - 17) * (x+2.5) and can be factored using the FOIL method. (FOIL) - First, Outer, Inner, Last. This method ensures that you include all of the terms with the same variables. The FOIL method is very easy and helpful for factoring complex equations and is something that is good to be familiar with for future study if you are looking to delve deeper into math!

The expression (3x^4 - 73x^2 - 50) factored is an example of a quadratic equation and the expression can be factored into (3x - 10)(x - 5). I think this is a good exercise because it shows how quadratic equations can be factored and the process involved, so students can apply the principles learned to other situations and problems they may encounter later on. It's important to understand how to factor quadratics since they often show up in real-world situations such as physics or statistics, so it's a great thing to have these skills locked in.

User Ankit Ostwal
by
7.2k points