Answer:
See below, please.
Explanation:
A) The first term of the sequence is given as sub 1 = 3 and the common difference is given as d = 4. Therefore, the first 6 terms of the sequence are
sub 1 = 3
sub 2 = sub 1 + d = 3 + 4 = 7
sub 3 = sub 2 + d = 7 + 4 = 11
sub 4 = sub 3 + d = 11 + 4 = 15
sub 5 = sub 4 + d = 15 + 4 = 19
sub 6 = sub 5 + d = 19 + 4 = 23
B) The terms of this sequence can be written as a series as
3 + 7 + 11 + 15 + 19 + 23 + ...
C) The graph of the arithmetic sequence is a straight line with a positive slope, as each term of the sequence is obtained by adding a constant (d = 4) to the previous term.
D) The first 6 partial sums of the series can be calculated as
S1 = 3
S2 = 3 + 7 = 10
S3 = 3 + 7 + 11 = 21
S4 = 3 + 7 + 11 + 15 = 36
S5 = 3 + 7 + 11 + 15 + 19 = 55
S6 = 3 + 7 + 11 + 15 + 19 + 23 = 78
Therefore, the first 6 terms of the sequence are 3, 7, 11, 15, 19, and 23. The terms of the sequence can be written as a series as 3 + 7 + 11 + 15 + 19 + 23 + ..., and the graph of the sequence is a straight line with a positive slope. The first 6 partial sums of the series are 3, 10, 21, 36, 55, and 78.