Step-by-step explanation:
First, we need to write a balanced chemical equation for the neutralization reaction:
2 HNO3(aq) + Ba(OH)2(aq) → 2 H2O(l) + Ba(NO3)2(aq)
From the balanced equation, we can see that the stoichiometric ratio of HNO3 to Ba(OH)2 is 2:1. This means that 2 moles of HNO3 react with 1 mole of Ba(OH)2.
Using the given information, we can calculate the number of moles of Ba(OH)2 that reacted:
moles of Ba(OH)2 = Molarity x Volume (in L)
moles of Ba(OH)2 = 0.250 M x (37.9/1000) L
moles of Ba(OH)2 = 0.009475 mol
Since the stoichiometric ratio of HNO3 to Ba(OH)2 is 2:1, the number of moles of HNO3 that reacted is twice the number of moles of Ba(OH)2:
moles of HNO3 = 2 x moles of Ba(OH)2
moles of HNO3 = 2 x 0.009475 mol
moles of HNO3 = 0.01895 mol
Finally, we can calculate the concentration of the HNO3 solution:
concentration of HNO3 = moles of HNO3 / volume of HNO3 solution (in L)
concentration of HNO3 = 0.01895 mol / 0.120 L
concentration of HNO3 = 0.158 mol/L
Therefore, the concentration of the HNO3 solution is 0.158 mol/L.