Answer: CLICK THANKS IF YOU LIKE MY ANSWER. HAVE A GOOD DAY SIR/MAAM #KEEPSAFE
Part A:
Let v be the velocity of the runner in km/h and let t be the time elapsed in hours. We can use the two given data points to form a system of two equations:
v = 5 when t = 1
v = 3 when t = 3
To find the equation in standard form, we can first use point-slope form:
v - 5 = m(t - 1) (using the point (1, 5))
v - 3 = m(t - 3) (using the point (3, 3))
Simplifying both equations:
v - 5 = m(t - 1)
v - 3 = m(t - 3)
v = mt + (5 - m)
v = mt + (3m - 3)
Setting the right-hand sides equal to each other:
mt + (5 - m) = mt + (3m - 3)
Simplifying and rearranging:
-m = -2
m = 2
Substituting m = 2 into one of the equations above:
v = 2t + 3
This is the equation in two variables in standard form that describes the velocity of the runner at different times.
Part B:
To graph the equation v = 2t + 3 for the first 5 hours, we can plot points for different values of t and then connect them with a line. For example:
When t = 0, v = 3, so the point (0, 3) is on the line.
When t = 1, v = 5, so the point (1, 5) is on the line.
When t = 2, v = 7, so the point (2, 7) is on the line.
When t = 3, v = 9, so the point (3, 9) is on the line.
When t = 4, v = 11, so the point (4, 11) is on the line.
When t = 5, v = 13, so the point (5, 13) is on the line.
Plotting these points on a coordinate plane and connecting them with a line, we get the graph of the equation v = 2t + 3 for the first 5 hours:
|
15 +-------*
| |
13 + *
| |
11 + *
| |
9 + *
| |
7 + *
| |
5 + *
| |
3 +---------------*-----------*
0 1 2 3 4 5 6 7
The x-axis represents time (t) in hours, and the y-axis represents velocity (v) in km/h. The line starts at (0, 3) and has a slope of 2, indicating that the velocity is increasing by 2 km/h for every hour that passes.
Explanation: