Answer: $28,383.68.
Explanation:
The first step is to determine the number of monthly payments over the 5-year period, which is 5 years x 12 months/year = 60 months.
Next, we can use the formula for the future value of an annuity, which is:
FV = P * ((1 + r/n)^(n*t) - 1) / (r/n)
where:
FV is the future value of the loan (the amount owed at the end of the 5-year period)
P is the initial principal amount ($20,000 in this case)
r is the annual interest rate (6%)
n is the number of compounding periods per year (12 for monthly compounding)
t is the total number of years (5)
Plugging in these values, we get:
FV = $20,000 * ((1 + 0.06/12)^(12*5) - 1) / (0.06/12)
FV = $28,383.68
Therefore, the balance owed at the end of the 5-year period would be $28,383.68.