6.7k views
4 votes
Finde the derivative of f(x)= (1+x^2)e^2x+5/1+2x^2

User Savas
by
7.9k points

1 Answer

3 votes

Answer:

Explanation:

To find the derivative of the given function f(x), we can use the product rule and the chain rule of differentiation:

f(x) = (1+x^2)e^(2x) + 5/(1+2x^2)

f'(x) = [(1+x^2)(d/dx[e^(2x)]) + (d/dx[1+x^2])(e^(2x))] + [(d/dx[5])(1+2x^2) - 5(d/dx[1+2x^2])(d/dx[1+2x^2])]/(1+2x^2)^2

Using the chain rule, we get:

d/dx[e^(2x)] = e^(2x) * d/dx[2x] = 2e^(2x)

Substituting this in the above expression, we get:

f'(x) = [(1+x^2)(2e^(2x)) + 2xe^(2x)] + [(0)(1+2x^2) - 5(2x)(0)]/(1+2x^2)^2

Simplifying further, we get:

f'(x) = 2e^(2x) + 2xe^(2x) + (-10x)/(1+2x^2)^2

Therefore, the derivative of f(x) is:

f'(x) = 2e^(2x) + 2xe^(2x) - (10x)/(1+2x^2)^2

User Libi
by
7.9k points