Answer:
We can start by using the vertex form of a quadratic function:
f(x) = a(x - h)^2 + k
where (h, k) is the vertex of the parabola.
We know that the vertex is (59, 300), so we can plug in these values:
f(x) = a(x - 59)^2 + 300
To determine the value of "a", we can use the fact that the parabola passes through the point (119, 0). So we substitute these values for x and y and solve for "a":
0 = a(119 - 59)^2 + 300
-300 = 3600a
a = -1/12
Substituting this value of "a" back into the equation for f(x), we get:
f(x) = (-1/12)(x - 59)^2 + 300
This quadratic function models the path of the flare, with a maximum height of 300 meters at the vertex (59, 300), and landing in the water at the point (119, 0).