305,526 views
34 votes
34 votes
.converge or diverge?  If it converges, to what value does it converge?

.converge or diverge?  If it converges, to what value does it converge?-example-1
User Jenia Be Nice Please
by
2.8k points

1 Answer

8 votes
8 votes

Given the series;


\sum ^(\infty)_(n\mathop=0)3((1)/(5))^(n-1)

To obtain the sum of the series above and decide if it converges or diverges, we will


\begin{gathered} \sum ^(\infty)_{n\mathop{=}0}3((1)/(5))^(n-1)=\sum ^(\infty)_{n\mathop{=}0}3(5)^(-(n-1)) \\ =\sum ^(\infty)_{n\mathop{=}0}3(5)^((1-n)) \\ =\sum ^(\infty)_{n\mathop{=}0}15*5^(-n) \\ =15\sum ^(\infty)_{n\mathop{=}0}((1)/(5))^n \end{gathered}

Simplify the resulting geometric series and decide if it converge or diverge


\sum ^(\infty)_{n\mathop{=}0}((1)/(5))^n\Rightarrow is\text{ an infinite geometric series, with first term a= 1 and common ratio r=}(1)/(5)

Solve for the sum to infinity of the geometric series


S_(\infty)=(a)/(1-r)=(1)/(1-(1)/(5))=(1)/((4)/(5))=(5)/(4)

The sum of the series wil be


15\sum ^(\infty)_{n\mathop{=}0}((1)/(5))^n\Rightarrow15*(5)/(4)=(75)/(4)

Hence,


\begin{gathered} \sum ^(\infty)_{n\mathop{=}0}3((1)/(5))^(n-1)=(75)/(4) \\ \text{The series converges} \end{gathered}

User Tacha
by
2.5k points