204k views
2 votes
American roulette is a game in which a wheel turns on a spindle and is divided into 38 pockets. Thirty-six of the pockets are numbered 1−36, of which half are red and half are black. Two of the pockets are green and are numbered 0 and 00 (see figure). The dealer spins the wheel and a small ball in opposite directions. As the ball slows to a stop, it has an equal probability of landing in any of the numbered pockets.

(a) Find the probability of landing in the number 0 pocket.


(b) Find the probability of landing in a black pocket.


(c) Find the probability of landing in a green pocket or a red pocket.


(d) Find the probability of landing in the number 6 pocket on two consecutive spins.


(e) Find the probability of landing in a red pocket on three consecutive spins.

American roulette is a game in which a wheel turns on a spindle and is divided into-example-1
User Endasan
by
8.8k points

1 Answer

3 votes

(a) Since there are 38 pockets and only one of them is 0, the probability of landing in the number 0 pocket is 1/38.

(b) Since half of the numbered pockets are black, and there are 36 numbered pockets, the probability of landing in a black pocket is 18/38 or 9/19.

(c) The probability of landing in a green pocket is 2/38 or 1/19, and the probability of landing in a red pocket is 18/38 or 9/19. To find the probability of landing in a green pocket or a red pocket, we add these probabilities: 1/19 + 9/19 = 10/19.

(d) The probability of landing in the number 6 pocket on one spin is 1/38. Since we want this to happen on two consecutive spins, we multiply this probability by itself: (1/38) × (1/38) = 1/1444.

(e) The probability of landing in a red pocket on one spin is 9/19. Since we want this to happen on three consecutive spins, we multiply this probability by itself three times: (9/19) × (9/19) × (9/19) = 729/6859 or approximately 0.1063.

User Prince
by
8.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories