193k views
5 votes
For the point P(19,10) and Q(26,13), find the distance d(P,Q) and the coordinates of the midpoint

M of the segment PQ.

User Dean Smith
by
7.6k points

1 Answer

5 votes


~~~~~~~~~~~~\textit{distance between 2 points} \\\\ P(\stackrel{x_1}{19}~,~\stackrel{y_1}{10})\qquad Q(\stackrel{x_2}{26}~,~\stackrel{y_2}{13})\qquad \qquad d = √(( x_2- x_1)^2 + ( y_2- y_1)^2) \\\\\\ PQ=√((~~26 - 19~~)^2 + (~~13 - 10~~)^2) \implies PQ=√(( 7 )^2 + ( 3 )^2) \\\\\\ PQ=√( 49 + 9 ) \implies PQ=√( 58 )\implies PQ\approx 7.62 \\\\[-0.35em] ~\dotfill


~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ P(\stackrel{x_1}{19}~,~\stackrel{y_1}{10})\qquad Q(\stackrel{x_2}{26}~,~\stackrel{y_2}{13}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 26 +19}{2}~~~ ,~~~ \cfrac{ 13 +10}{2} \right) \implies \left(\cfrac{ 45 }{2}~~~ ,~~~ \cfrac{ 23 }{2} \right)\implies \stackrel{ \textit{\LARGE M} }{\left(22(1)/(2)~~,~~11(1)/(2) \right)}

User Pedru
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories