Answer:
To find the slope of the line through point B and perpendicular to line k, we need to first find the slope of line k.
If we have the equation of line k in slope-intercept form, y = mx + b, then the slope of line k is simply the coefficient of x, which is m.
Assuming we don't have the equation of line k, we can find its slope by using the slope formula, which is:
m = (y2 - y1)/(x2 - x1)
where (x1, y1) and (x2, y2) are two points on line k.
Let's say line k passes through points P and Q. Then we can write the slope of line k as:
m = (yQ - yP)/(xQ - xP)
Now, we want to find the slope of the line through point B and perpendicular to line k. We know that the product of the slopes of two perpendicular lines is -1. That is:
m1 * m2 = -1
where m1 is the slope of line k, and m2 is the slope of the line through point B and perpendicular to line k.
Therefore, we can write:
m2 = -1/m1
So we just need to find the slope of line k, and then we can use this formula to find the slope of the line through point B and perpendicular to line k.
Once we have the slope of the line through point B, we can write its equation in point-slope form:
y - yB = m2(x - xB)
where (xB, yB) is the point B.
Hope this helps with you with your question (it's not a direct answer, I think?) I'm sorry if it doesn't! If you need more help, ask me! :]