Answer:
The balanced chemical equation for the reaction of NaHCO3 and Ca(H2PO4)2 is:
2 NaHCO3(aq) + Ca(H2PO4)2(aq) → Na2HPO4(aq) + CaHPO4(aq) + 2 CO2(g) + 2 H2O(l)
From the equation, we see that 2 moles of NaHCO3 produce 2 moles of CO2. Therefore, 1 mole of NaHCO3 produces 1 mole of CO2. We can use the molar mass of NaHCO3 to convert from moles to grams.
The molar mass of NaHCO3 is:
Na: 1 x 22.99 g/mol = 22.99 g/mol
H: 1 x 1.01 g/mol = 1.01 g/mol
C: 1 x 12.01 g/mol = 12.01 g/mol
O: 3 x 16.00 g/mol = 48.00 g/mol
Total molar mass = 22.99 + 1.01 + 12.01 + 48.00 = 83.01 g/mol
One kilogram (1000 g) of baking powder contains 168 g of NaHCO3. Therefore, one kilogram of baking powder contains:
1000 g baking powder × (168 g NaHCO3 / 1000 g baking powder) = 168 g NaHCO3
To produce 2.2 L of CO2 at baking temperature, we need:
2.2 L CO2 × (1.20 g CO2 / 1 L CO2) = 2.64 g CO2
Since 1 mole of NaHCO3 produces 1 mole of CO2, we need 2.64 g of NaHCO3 to produce 2.64 g of CO2. This corresponds to:
2.64 g NaHCO3 × (1 mol NaHCO3 / 83.01 g NaHCO3) × (1 kg baking powder / 168 g NaHCO3) = 0.0198 kg baking powder
Therefore, we need 0.0198 kg, or 19.8 g, of baking powder to generate 2.2 L of CO2 at baking temperature.
Step-by-step explanation: