Step 1: To convert 1.33 repeating into a fraction, begin writing this simple equation:
n = 1.33 (equation 1)
Step 2: Notice that there are 2 digitss in the repeating block (33), so multiply both sides by 1 followed by 2 zeros, i.e., by 100.
100 × n = 133.333 (equation 2)
Step 3: Now subtract equation 1 from equation 2 to cancel the repeating block (or repetend) out.
100 × n = 133.333
1 × n = 1.33
99 × n = 132
132
99
could be the answer, but it still can be put in the simplest form, i.e., reduced.
To simplify this fraction, divide the numerator and denominator by 33 (the GCF - greatest common factor).
n = 132
99
= 132 ÷ 33
99 ÷ 33
= 4
3
. So, 1.33 = 4/3
as the lowest possible fraction.