Answer: Approximately 2 * AC = 737.2 meters. Rounded to the nearest tenth, the answer is 737.2 meters.
Step-by-step explanation: To solve the problem, we can draw a diagram:
A
/|
/ |
/ | x
/ |
/ |
/θ |
/ |
/ |
/ |
/ |
/ |
B-----------C
y
where A and B are the entrances of the tunnel, C is the point in the middle of the tunnel that we want to find, and θ, x, and y are the angles and distances given in the problem. We want to find the length of AC.
Using trigonometry, we can find the distances BC and AB: tan(57°) = x / y => x = y * tan(57°)
tan(14°) = x / (y + 212) => x = (y + 212) * tan(14°)
Setting these two expressions for x equal, we get: y * tan(57°) = (y + 212) * tan(14°)
Solving for y, we get: y = 212 / (tan(57°) / tan(14°) - 1) ≈ 286.5 meters
Now we can use the law of sines to find the length of AC: sin(θ) / AC = sin(14°) / BC = sin(57°) / AB
Solving for AC, we get: AC = AB * sin(θ) / sin(57°) ≈ 368.6 meters
Therefore, the length of the entire tunnel is approximately 2 * AC = 737.2 meters. Rounded to the nearest tenth, the answer is 737.2 meters.