We can solve this problem using the standard equation of a circle:
(x - h)² + (y - k)² = r²
where (h, k) is the center of the circle and r is the radius.
Since Noa is at the origin, the center of the circle is the midpoint between the object and the point where the drone passes:
h = (210 - 170)/2 = 20
k = (190 - 150)/2 = 20
The radius is the distance between the center and the point where the drone passes:
r = √((170 - 20)² + (190 - 20)²) = √(150² + 170²) = √(62500) = 250
So the equation of the drone's path is:
(x - 20)² + (y - 20)² = 250²
When the drone passes due north of Noa's position, its x-coordinate is 20, so we can substitute that into the equation:
(20 - 20)² + (y - 20)² = 250²
y - 20 = ±√(250²)
y = 20 ± 250
y ≈ -230 or y ≈ 270
So the drone will be approximately 230 feet north of Noa's position.