142k views
5 votes
Differentiate in respect to yS(siny + y cosy)dy

1 Answer

2 votes
Answer:

The derivative of yS(siny + ycosy)dy with respect to y is yS(cosy - ysiny) + S(siny + ycosy).

Step-by-step explanation:

To differentiate the expression yS(siny + y cosy)dy, we need to apply the product rule of differentiation. The product rule states that for two functions u(x) and v(x), the derivative of their product is given by:

(d/dx)(u(x) v(x)) = u'(x) v(x) + u(x) v'(x)

Using this rule, we can differentiate the expression as follows:

Let u(y) = yS and v(y) = siny + ycosy. Then,

u'(y) = S (the derivative of yS with respect to y is S)

v'(y) = cosy + y(-siny) = cosy - ysiny (using the product rule again)

Using the product rule, we have:

(d/dy)(u(y) v(y)) = u'(y) v(y) + u(y) v'(y)
= yS (cosy - ysiny) + S(siny + ycosy)

Therefore, the derivative of yS(siny + ycosy)dy with respect to y is yS(cosy - ysiny) + S(siny + ycosy).
User Skeffington
by
7.1k points

Related questions

asked Dec 9, 2024 193k views
Iamserious asked Dec 9, 2024
by Iamserious
7.5k points
1 answer
5 votes
193k views
asked Nov 10, 2022 121k views
Adam Johnson asked Nov 10, 2022
by Adam Johnson
7.4k points
1 answer
2 votes
121k views