93.2k views
2 votes
If cos 55° = p determine the value of cos 5° in terms of p.​

1 Answer

0 votes

Answer:

Explanation:

We can use the identity for the cosine of the sum of two angles:

cos(a + b) = cos(a)cos(b) - sin(a)sin(b)

In this case, we can write:

cos(60°) = cos(55° + 5°) = cos(55°)cos(5°) - sin(55°)sin(5°)

We know that cos(60°) = 1/2, and we also know that cos(55°) = p. We can solve for cos(5°):

1/2 = p cos(5°) - sin(55°)sin(5°)

sin(55°)sin(5°) = p cos(5°) - 1/2

We also know that sin²(55°) + cos²(55°) = 1, so:

sin²(55°) = 1 - cos²(55°) = 1 - p²

Substituting this into the previous equation:

(1 - p²)sin(5°)² = p cos(5°) - 1/2

Rearranging and factoring:

p cos(5°) = 1/2 - (1 - p²)sin(5°)²

Using the fact that sin²(5°) + cos²(5°) = 1, we can substitute cos²(5°) = 1 - sin²(5°):

p cos(5°) = 1/2 - (1 - p²)(1 - cos²(5°))

Simplifying:

p cos(5°) = 1/2 - (1 - p²) + (1 - p²)cos²(5°)

p cos(5°) = 1 - 2p² + (2p² - 1)cos²(5°)

Solving for cos²(5°):

cos²(5°) = (1 - p cos(5°) + 2p²) / (2p² - 1)

Substituting the value we found for p, cos²(55°) = p²:

cos²(5°) = (1 - p cos(5°) + 2cos²(55°)) / (2cos²(55°) - 1)

Finally, substituting p = cos(55°):

cos²(5°) = (1 - cos²(55°) cos(5°) + 2cos²(55°)) / (2cos²(55°) - 1)

cos²(5°) = (2cos²(55°) - cos²(55°) cos(5°) + 1) / (2cos²(55°) - 1)

cos²(5°) = (cos²(55°) + 1) / (2cos²(55°) - 1)

Therefore, the value of cos 5° in terms of p = cos 55° is:

cos 5° = ±sqrt[(cos²(55°) + 1) / (2cos²(55°) - 1)]

Note that the sign of the square root is determined by the quadrant in which 5° lies. Since 5° is in the first quadrant, cos 5° is positive.

User Plan
by
8.1k points