Answer:
Explanation:
We can use the information given to find the equation of the line that represents the relationship between the number of bean stalks and the yield. The equation of a line is typically given by the slope-intercept form, y = mx + b, where y is the dependent variable (in this case, the yield), x is the independent variable (the number of bean stalks), m is the slope, and b is the y-intercept.
To find the slope of the line, we can use the formula:
m = (Y2 - Y1) / (n2 - n1)
where (n1, Y1) and (n2, Y2) are two points on the line. We can use the two data points given in the problem to find the slope:
m = (190 - 115) / (8 - 3) = 15
To find the y-intercept, we can use the point-slope form of a line, which is:
y - Y1 = m(x - n1)
where (n1, Y1) is one of the points on the line. We can use the point (3, 115):
y - 115 = 15(x - 3)
Simplifying:
y = 15x - 20
Therefore, the equation that represents the relationship between the number of bean stalks and the yield is:
Y = 15n - 20
This equation tells us that for each additional bean stalk planted, the yield increases by 15 ounces, and the y-intercept of -20 indicates that even if no bean stalks were planted, there would still be a yield of -20 ounces (which doesn't make physical sense in this case, but is a mathematical artifact of the linear regression).