186k views
5 votes
CAN SOMEONE HELP WITH THIS QUESTION?

CAN SOMEONE HELP WITH THIS QUESTION?-example-1
User Zackery
by
8.2k points

1 Answer

3 votes

Answers:


\text{Derivative: } \ \ (dy)/(dx) = (-260x^(9) - 156x^(25)y)/(6x^(26)+7y^6)\\\\ \text{Tangent line at (1,1) is: } \ y = -32x + 33\\\\

==========================================================

Work Shown:

Let's determine the derivative dy/dx.

Part 1


26x^(10) + 6x^(26)y+y^7 = 33\\\\ (d)/(dx)(26x^(10) + 6x^(26)y+y^7) = (d)/(dx)(33)\\\\ (d)/(dx)(26x^(10)) + (d)/(dx)(6x^(26)y)+(d)/(dx)(y^7) = 0\\\\ 10*26x^(10-1) + (d)/(dx)(6x^(26))y+(6x^(26))*(dy)/(dx)+7y^6(dy)/(dx) = 0\\\\

Part 2


260x^(9) + 26*6x^(26-1)y+6x^(26)*(dy)/(dx)+7y^6(dy)/(dx) = 0\\\\ 260x^(9) + 156x^(25)y+6x^(26)*(dy)/(dx)+7y^6(dy)/(dx) = 0\\\\ 260x^(9) + 156x^(25)y+(6x^(26)+7y^6)(dy)/(dx) = 0\\\\ (6x^(26)+7y^6)(dy)/(dx) = -260x^(9) - 156x^(25)y\\\\ (dy)/(dx) = (-260x^(9) - 156x^(25)y)/(6x^(26)+7y^6)\\\\

There are many other possible ways to express the dy/dx expression.

GeoGebra and WolframAlpha are two useful tools to help verify the answer. Make sure you use the CAS mode in GeoGebra.

-------------------------------------------

Part 3

Now that we know dy/dx, we can determine the slope of the tangent at any point (x,y) on the implicit function curve.

Plug in x = 1 and y = 1.


(dy)/(dx) = (-260x^(9) - 156x^(25)y)/(6x^(26)+7y^6)\\\\ (dy)/(dx) = (-260(1)^(9) - 156(1)^(25)(1))/(6(1)^(26)+7(1)^6)\\\\ (dy)/(dx) = (-260(1) - 156(1)(1))/(6(1)+7(1))\\\\ (dy)/(dx) = (-260 - 156)/(6+7)\\\\ (dy)/(dx) = (-416)/(13)\\\\ (dy)/(dx) = -32\\\\

The slope of the tangent line at (1,1) is m = -32.

-------------------------------------------

Part 4

Apply the point-slope formula to determine the tangent line.


m = -32 = \text{ slope}\\(x_1,y_1) = (1,1) = \text{the point the tangent line goes through}

So,


y - y_1 = m(x - x_1)\\\\y - 1 = -32(x - 1)\\\\y - 1 = -32x + 32\\\\y = -32x + 32 + 1\\\\y = -32x + 33\\\\

User Letsgo
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories