b.
i. To find fog(x), we need to first apply g to x and then apply f to the result.
g(x) = x - 5
So,
fog(x) = f(g(x)) = f(x - 5)
= 3(x - 5)² + 1
= 3(x² - 10x + 25) + 1
= 3x² - 30x + 76
Therefore, fog(x) = 3x² - 30x + 76.
ii. To find gof(x), we need to first apply f to x and then apply g to the result.
f(x) = 3x² + 1
So,
gof(x) = g(f(x)) = g(3x² + 1)
= 3x² + 1 - 5
= 3x² - 4
Therefore, gof(x) = 3x² - 4.
iii. We want to find the inverse of the composite function f o g.
Let y = fog(x) = f(g(x)) = f(x - 5) = 3(x - 5)² + 1
To find the inverse of f o g, we need to solve for x in terms of y.
3(x - 5)² + 1 = y
3(x - 5)² = y - 1
(x - 5)² = (y - 1) / 3
x - 5 = ±√((y - 1) / 3)
x = 5 ±√((y - 1) / 3)
Therefore, the inverse of f o g is:
(ƒ o g)−¹(x) = 5 ±√((x - 1) / 3)