89.2k views
5 votes
Two cylinders, A and B, are created. Cylinder B has the same height as Cylinder A. Cylinder B is half the diameter of Cylinder A. Create an expression that presents the volume of cylinder B in terms of the volume of cylinder A,V

1 Answer

6 votes
The formula for the volume of a cylinder is V = πr^2h, where r is the radius of the cylinder and h is the height of the cylinder. Since Cylinder B has half the diameter of Cylinder A, its radius is half that of Cylinder A.

Let's say that the radius of Cylinder A is r and its height is h. The radius of Cylinder B would be r/2, since it has half the diameter of Cylinder A. The height of Cylinder B is the same as that of Cylinder A, so it is also h.

So, the volume of Cylinder A is:

V(A) = πr^2h

And the volume of Cylinder B is:

V(B) = π(r/2)^2h

Simplifying the equation for V(B):

V(B) = π(r^2/4)h

We can simplify further by multiplying both sides by 4/4:

V(B) = (4/4)π(r^2/4)h

V(B) = π(r^2/4)(4h)

V(B) = πr^2h/4

Therefore, the expression that presents the volume of Cylinder B in terms of the volume of Cylinder A is:

V(B) = V(A)/4
User Thijser
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories