61.5k views
5 votes
Simplify:

cos^2(a) /( sin(a)-1)

User Maria Jane
by
7.2k points

2 Answers

2 votes

Answer:-1

Explanation:


(cos^(2)a)/(sina-1) \\cos^(2)a=(1+cos2a)/(2)\\((1+cos2a)/(2))/(sina-1)=(1+cos2a)/(2(sina-1))=(1+cos2a)/(2sina-2)=(1+cos2a)/(-(2-2sina))\\1-2sina=cos2a\\(1+cos2a)/(-(1+(1-2sina)))=(1+cos2a)/(-(1+cos2a))=-1

User Sampat
by
8.1k points
3 votes


\cfrac{cos^2(a)}{sin(a)-1}\implies \cfrac{1-sin^2(a)}{sin(a)-1}\implies \cfrac{\stackrel{ \textit{difference of squares} }{1^2-sin^2(a)}}{sin(a)-1} \\\\\\ \cfrac{[1-sin(a)][1+sin(a)]}{sin(a)-1}\implies \cfrac{~~\begin{matrix} [1-sin(a)] \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~[1+sin(a)]}{-[~~\begin{matrix} 1-sin(a) \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~]}\implies -[1+sin(a)]

User Siegfried
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories