Answer:
the average velocity of the ball on the interval [1, 3/2] is -808 ft/s.
Explanation:
The height of the ball at time t is given by the formula:
s(t) = -16t^2 + 50t + 1200
We need to find the average velocity of the ball on the interval [1, 3/2]. The average velocity is defined as the change in position divided by the change in time, or:
average velocity = (s(3/2) - s(1)) / (3/2 - 1)
Substituting the formula for s(t), we get:
average velocity = ((-16(3/2)^2 + 50(3/2) + 1200) - (-16(1)^2 + 50(1) + 1200)) / (3/2 - 1)
Simplifying and solving for the average velocity, we get:
average velocity = (430 - 1234) / (1/2) = -808 ft/s
Therefore, the average velocity of the ball on the interval [1, 3/2] is -808 ft/s.