Answer:
Yes. ΔrG° and ΔfG° represent the same thing, namely the standard free Gibbs energy. In the context of thermodynamics, this energy refers to the energy associated with a reaction that is taking place at a given temperature, pressure and concentration of reactants. This energy is dependent on the thermodynamic properties of the substances that are undergoing the reaction, and can be calculated from the reaction enthalpy, entropy and the standard state properties of the participating chemicals.
To further clarify the concept, let's take a look at a simple reaction:
A + B → C + D.
The standard free Gibbs energy for this reaction can be calculated using the following equation:
ΔrG° = ΔH° - TΔS°
Where ΔH° is the standard enthalpy change for the reaction, T is the temperature in Kelvin, and ΔS° is the standard entropy change for the reaction. It is important to note that both ΔH° and ΔS° are given in units of kJ/mol. The resulting ΔrG° can also be expressed in terms of the standard state properties of each participating reactant, resulting in the equation:
ΔrG° = Σi (ni·G°i) = Σi (ni·(H°i - T·S°i))
Where ni is the stoichiometric coefficient of the reactant,