19.8k views
5 votes
Tan(-A).sin (180°+A).sec (270°-A)=x. sin (-A)-cos²(90° + A).tan A. Find the value of x​

User Nuaavee
by
7.3k points

1 Answer

3 votes

Answer:

Explanation:

We can simplify the expression on the left-hand side using trigonometric identities:

tan(-A) = -tan(A) (since tan(-θ) = -tan(θ))

sin(180°+A) = -sin(A) (since sin(180°+θ) = -sin(θ))

sec(270°-A) = -cos(A) (since sec(270°-θ) = -cos(θ))

cos²(90°+A) = sin²A (since cos²(90°+θ) = sin²θ)

Substituting these values, we get:

-x.sin(A).cos(A).tan(A) = x.sin(-A) - sin²A.sin(A)

-x.sin(A).cos(A).tan(A) = -x.sin(A) - sin³A

Now, we can simplify this equation by moving all the terms to one side:

-x.sin(A).cos(A).tan(A) + x.sin(A) + sin³A = 0

Factoring out sin(A), we get:

sin(A) (-x.cos(A).tan(A) + x + sin²A) = 0

Since sin(A) ≠ 0, we can divide both sides by sin(A):

-x.cos(A).tan(A) + x + sin²A = 0

Multiplying both sides by cos(A), we get:

-x.sin(A) + x.cos²(A) + sin²A.cos(A) = 0

Using the identity cos²(θ) + sin²(θ) = 1, we can write this as:

-x.sin(A) + x(1 - sin²A) + sin²A.cos(A) = 0

Simplifying and rearranging, we get:

x = sin(A)/(cos(A) - sin²(A))

Therefore, the value of x is given by the expression sin(A)/(cos(A) - sin²(A)).

User Kasper Grubbe
by
7.0k points