142k views
5 votes
You fill a rigid steel cylinder that has a volume of 10.0 L with 20. moles of nitrogen gas at 331 ºK. What is the final pressure in kPa in the cylinder?

User Hoyt
by
7.5k points

1 Answer

1 vote
To determine the final pressure in kPa in the cylinder, we can use the ideal gas law equation, PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant (8.31 J/mol*K), and T is the temperature in Kelvin.

First, we need to convert the temperature from Celsius to Kelvin by adding 273.15 to it.
So, the temperature T = 331 + 273.15 = 604.15 K

Next, we can calculate the final pressure using the ideal gas law equation.
n = 20.0 moles
V = 10.0 L
T = 604.15 K
R = 8.31 J/mol*K

Plugging the values into the ideal gas law equation, we get:
P = (nRT) / V
P = (20.0 mol * 8.31 J/(mol*K) * 604.15 K) / 10.0 L
P = 10,006.9 Pa
P = 10.01 kPa (rounded to two decimal places)

Therefore, the final pressure in kPa in the cylinder is 10.01 kPa.
User Akauppi
by
7.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.