To find out how long it will take for the arrow to hit the enemy on the bridge, we need to find the time when the height of the arrow is 45 feet (the height of the enemy's head above the ground).
So, we can set h(t) equal to 45 and solve for t:
h(t) = − 16t²+60t + 9.5
45 = −16t² + 60t + 9.5
Rearranging the equation, we get:
16t² - 60t - 35.5 = 0
To solve for t, we can use the quadratic formula:
t = (-b ± sqrt(b² - 4ac)) / 2a
where a = 16, b = -60, and c = -35.5
Plugging in the values, we get:
t = (-(-60) ± sqrt((-60)² - 4(16)(-35.5))) / 2(16)
Simplifying the expression inside the square root, we get:
t = (60 ± sqrt(3600 + 2272)) / 32
t = (60 ± sqrt(5872)) / 32
t ≈ 0.81 or t ≈ 3.69
Since we're looking for the time when the arrow hits the enemy, we need to choose the positive solution: t ≈ 3.69 seconds.
Therefore, it will take approximately 3.69 seconds for the arrow to hit the enemy on the bridge with a perfect headshot.