Answer:
sin(B)/b = sin(A)/a
sin(B)/12 = sin(58)/a
a = 12(sin(58)/sin(B))
Now we can use the Law of Cosines to find the remaining sides of the triangle:
a^2 = b^2 + c^2 - 2bc*cos(A)
a^2 = 12^2 + c^2 - 2(12)(c)*cos(58)
c^2 - 24c*cos(58) + 144 - a^2 = 0
Using the quadratic formula, we get:
c = (24*cos(58) ± sqrt((24*cos(58))^2 - 4(1)(144 - a^2)))/2(1)
c = 12*cos(58) ± sqrt(144*cos(58)^2 - 4(144 - a^2))
c = 12*cos(58) ± sqrt(576*cos(58)^2 - 4a^2)
c = 12*cos(58) ± sqrt(576*(1 - sin(58)^2) - 4a^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 4a^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 4(12(sin(58)/sin(B)))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/sin(B))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/sin(B))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/sin(B))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/sin(B))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/sin(B))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/sin(B))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/sin(B))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/sin(B))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/(sin(180 - A - B)))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/(sin(180 - 58 - B)))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/(sin(122 - B)))^2)
Now we can substitute the value we found for a into the equation for c to get:
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/(sin(122 - B)))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/(sin(122 - arcsin(a/b))))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/(sin(122 - arcsin(12/a))))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/(sin(122 - arcsin(12/(12(sin(58)/sin(B)))))))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/(sin(122 - arcsin(sin(58)/sin(B))))))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/(sin(122 - arcsin(sin(58)/(12*sin(58)/a))))))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/(sin(122 - arcsin(a/12))))))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/(sin(122 - arcsin(1/12)*a))))))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/(sin(122 - 4.98)*a))))))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/(sin(117.02)*a))))))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(sin(58)/(0.97*a))))))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(1.03*a/sin(58))))))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(1.03*(12*sin(58)/sin(B))/sin(58))))))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(1.03*(12/sin(B)))))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(1.03*(12/sin(180 - A - B)))))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(1.03*(12/sin(180 - 58 - B)))))^2)
c = 12*cos(58) ± sqrt(576 - 576*sin(58)^2 - 576(1.03*(12/sin(122 - B)))))^2)
Now we can solve for c using the two possible values of B:
B = arcsin(b*sin(A)/a)
B = arcsin(12*sin(58)/a)
B = arcsin(12*sin(58)/(12*sin(58)/sin(B)))
B = arcsin(sin(B))
B = 58
or
B = 180 - arcsin(b*sin(A)/a)
B = 180 - arcsin(12*sin