Answer:

Explanation:


Therefore:

Cosine Double Angle Identities
cos(A±B) = cosA cosB ∓ sinA sinB
cos(2θ) = cos²θ - sin²θ
cos(2θ) = 2cos²θ - 1
cos(2θ) = 1 - 2sin²θ
Use the cos double angle identity cos(2θ) = 1 - 2sin²θ to rewrite cos(2u) in terms of sin:

Simplify:

Sine Double Angle Identities
sin(A±B) = sinAcosB ± cosAsinB
sin(2θ) = 2sinθcosθ
Using the sine double angle identity to rewrite 2sin(u)cos(u) as sin(2u):

Finally, substitute u = θ/2 back in:

If you don't want to substitute u = θ/2, the full calculation using the same double angle identities is:
