The equation of the line passing through (-8, -10) and passing through (x1, f(x1)) is given by y = 5x + 30.
m = (f(x2) - f(x1)) / (x2 - x1)
f(x) = 3x from x1 = 0 to x2 = 5
f(x) = x2 + 2x from x1 = 3 to x2 = 5
m = (f(5) - f(0)) / (5 - 0)
m = (53 + 2(5)) - (03 + 2(0)) / (5 - 0)
m = 25 / 5
m = 5
Therefore, the average rate of change of the function from x1 to x2 is 5.
The equation of the line passing through (-8, -10) and passing through (x1, f(x1)) is given by the equation:
y = mx + b
where m is the slope of the line and b is the y-intercept.
We can find the slope of the line, m, from the average rate of change of the function from x1 to x2 which is 5.
We can find the y-intercept, b, by substituting the coordinates (-8, -10) in the equation of the line.
y = 5x + b
-10 = 5(-8) + b
b = 30
Therefore, the equation of the line passing through (-8, -10) and passing through (x1, f(x1)) is given by y = 5x + 30.