Answer:
m∠BCA = 57°
Explanation:
To find the measure of angle BCA we must first find the value of x.
The diagram gives expressions for the exterior angles of the triangle.
The exterior angles of a triangle sum to 360°. Therefore, to calculate the value of x, equate the sum of the exterior angles to 360° and solve for x.
⇒ (9x + 1)° + (5x + 12)° + (10x - 37)° = 360°
⇒ 9x + 1 + 5x + 12 + 10x - 37 = 360
⇒ 9x + 5x + 10x + 1 + 12 - 37 = 360
⇒ 24x - 24 = 360
⇒ 24x - 24 + 24 = 360 + 24
⇒ 24x = 384
⇒ 24x ÷ 24 = 384 ÷ 24
⇒ x = 16
Each interior and exterior angle of a triangle form a linear pair.
As the sum of angles of a linear pair is always equal to 180°, to find the measure of angle BCA, equate the sum of ∠BCA and its exterior angle to 180°:
⇒ (10x - 37)° + m∠BCA = 180°
Substitute the found value of x and solve for the angle:
⇒ (10(16) - 37)° + m∠BCA = 180°
⇒ (160 - 37)° + m∠BCA = 180°
⇒ 123° + m∠BCA = 180°
⇒ 123° + m∠BCA - 123° = 180° - 123°
⇒ m∠BCA = 57°
Therefore, the measure of angle BCA is 57°.