Answer:
The surface area of a right circular cylinder consists of three parts: the top and bottom circular faces, and the curved lateral surface.
The area of each circular face is given by the formula A = πr^2, where r is the radius. Therefore, the total area of the two circular faces is:
2A = 2πr^2
The lateral surface area of a cylinder is given by the formula A = 2πrh, where r is the radius and h is the height. Therefore, the lateral surface area of the cylinder is:
A = 2πrh
Substituting the given values, we get:
A = 2π(5 cm)(9 cm)
Simplifying, we get:
A = 90π cm^2
Adding the areas of the circular faces and the lateral surface, we get the total surface area:
Total surface area = 2A + A = 3A
Substituting the value of A, we get:
Total surface area = 3(90π cm^2) = 270π cm^2
Therefore, the exact surface area of the cylinder is 270π square centimeters.