Answer:
The third term of a proportional will be: 84
Explanation:
We know that if a, b, c and d are in proportion, then:
![\:\:a\:* \:d\:=\:b\:* \:c](https://img.qammunity.org/2022/formulas/mathematics/college/cdeui2uxxkpjm0msadk0nfsiny2f6o2m4t.png)
In our case, we are given the first, second, and fourth terms are
![24, 36, 126](https://img.qammunity.org/2022/formulas/mathematics/college/lku3noxovx0l082ej5cqxdgd7hb4rkr4d3.png)
![a = 24](https://img.qammunity.org/2022/formulas/mathematics/college/dgblu7lxoadwdmij879hmfxqq3tm8f8vyf.png)
![b = 36](https://img.qammunity.org/2022/formulas/mathematics/college/2i1gg6nu4lx3yqp3rq15iei4xac51d9w8w.png)
![d = 126](https://img.qammunity.org/2022/formulas/mathematics/college/8kvs6793dsru4inpxy523yh01k52kr7xv3.png)
and we have to determine the third term 'c'.
as we know that if a, b, c, and d are in proportion, then:
![\:\:a\:* \:d\:=\:b\:* \:c](https://img.qammunity.org/2022/formulas/mathematics/college/cdeui2uxxkpjm0msadk0nfsiny2f6o2m4t.png)
Thus,
substituting a = 24, b = 36, d = 126 to determine
![24\:* \:126\:=\:36\:* \:c](https://img.qammunity.org/2022/formulas/mathematics/college/2c5xgwrchzqqc8eza2i1sne5tx0bakf1tl.png)
![c=(24\:* \:\:126)/(36)](https://img.qammunity.org/2022/formulas/mathematics/college/n1ivmvsfxh4nsq3hx8qf54c1zkdnghrf9c.png)
![c=(3024)/(36)](https://img.qammunity.org/2022/formulas/mathematics/college/5b7kocgdv9pft9nl2b0d51t0d0nr0drt5p.png)
![c = 84](https://img.qammunity.org/2022/formulas/mathematics/college/9d837hlfow8q8un234fvx79yuouayi6n17.png)
Thus, the third term of a proportional will be: 84