168k views
0 votes
Find the diviative of the following

y = ( √(1 + 2x)) 5


User DavSev
by
7.8k points

2 Answers

4 votes

Answer:


(d)/(dx)\left(√(1\:+\:2x)\right)5 = \boxed{(5)/(√(1+2x))}

Explanation:

Given
y = \left(√(1\:+\:2x)\right)5

we are asked to find
(dy)/(dx)


(dy)/(dx) = (d)/(dx)\left(√(1\:+\:2x)\right)5\\\\= 5(d)/(dx)\left(√(1+2x)\right)\\\\

Find
(d)/(dx)\left(√(1+2x)\right):

Let \;u = 1 + 2x\\\\f(u) = \sqrt(u)\\\\


\mathrm{Apply\:the\:chain\:rule}:\quad (df\left(u\right))/(dx)=(df)/(du)\cdot (du)/(dx)


= (d)/(du)\left(√(u)\right)(d)/(dx)\left(1+2x\right)


(d)/(du)\left(√(u)\right) = (d)/(du)\left(u^{(1)/(2)}\right)\\\\= (1)/(2)u^{(1)/(2)-1}\\\\= (1)/(2√(u))\\\\\\

Substitute back u = 1 + 2x

= (1)/(2√(1+2x))


(d)/(dx)(1 + 2x) =(d)/(dx)(1)} + (d)/(dx){2x}\\\\= 0 + 2 \\\\= 2\\

Therefore

(dy)/(dx) = (d)/(dx)\left(√(1\:+\:2x)\right)5\\\\= 5(d)/(dx)\left(√(1+2x)\right)\\\\


= 5\cdot (1)/(2√(1+2x))\cdot \:2\\\\= 5\cdot (1)/(√(1 + 2x))\\\\=(5)/(√(1+2x))

User Kraf
by
7.8k points
0 votes

Answer:

Explanation:

1+2x)5

First you minus the 1 with the 5

Which you'll get a four then divide it by 2

Which you'll get x=2

But then times it by 5

Then you get y=10

User Tom Hazel
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories