168k views
0 votes
Find the diviative of the following

y = ( √(1 + 2x)) 5


User DavSev
by
7.3k points

2 Answers

4 votes

Answer:


(d)/(dx)\left(√(1\:+\:2x)\right)5 = \boxed{(5)/(√(1+2x))}

Explanation:

Given
y = \left(√(1\:+\:2x)\right)5

we are asked to find
(dy)/(dx)


(dy)/(dx) = (d)/(dx)\left(√(1\:+\:2x)\right)5\\\\= 5(d)/(dx)\left(√(1+2x)\right)\\\\

Find
(d)/(dx)\left(√(1+2x)\right):

Let \;u = 1 + 2x\\\\f(u) = \sqrt(u)\\\\


\mathrm{Apply\:the\:chain\:rule}:\quad (df\left(u\right))/(dx)=(df)/(du)\cdot (du)/(dx)


= (d)/(du)\left(√(u)\right)(d)/(dx)\left(1+2x\right)


(d)/(du)\left(√(u)\right) = (d)/(du)\left(u^{(1)/(2)}\right)\\\\= (1)/(2)u^{(1)/(2)-1}\\\\= (1)/(2√(u))\\\\\\

Substitute back u = 1 + 2x

= (1)/(2√(1+2x))


(d)/(dx)(1 + 2x) =(d)/(dx)(1)} + (d)/(dx){2x}\\\\= 0 + 2 \\\\= 2\\

Therefore

(dy)/(dx) = (d)/(dx)\left(√(1\:+\:2x)\right)5\\\\= 5(d)/(dx)\left(√(1+2x)\right)\\\\


= 5\cdot (1)/(2√(1+2x))\cdot \:2\\\\= 5\cdot (1)/(√(1 + 2x))\\\\=(5)/(√(1+2x))

User Kraf
by
7.2k points
0 votes

Answer:

Explanation:

1+2x)5

First you minus the 1 with the 5

Which you'll get a four then divide it by 2

Which you'll get x=2

But then times it by 5

Then you get y=10

User Tom Hazel
by
7.3k points