109k views
3 votes
Use the table to write a linear function that relates to y to x. PLEASEE HELP

Use the table to write a linear function that relates to y to x. PLEASEE HELP-example-1
User Donice
by
8.2k points

1 Answer

3 votes

to get the equation of any straight line, we simply need two points off of it, let's use those two points in the picture below.


(\stackrel{x_1}{3}~,~\stackrel{y_1}{7})\qquad (\stackrel{x_2}{6}~,~\stackrel{y_2}{9}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{\textit{\large rise}} {\stackrel{y_2}{9}-\stackrel{y1}{7}}}{\underset{\textit{\large run}} {\underset{x_2}{6}-\underset{x_1}{3}}} \implies \cfrac{ 2 }{ 3 }


\begin{array}ll \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{7}=\stackrel{m}{ \cfrac{ 2 }{ 3 }}(x-\stackrel{x_1}{3}) \\\\\\ y-7=\cfrac{ 2 }{ 3 }x-2\implies {\Large \begin{array}{llll} y=\cfrac{ 2 }{ 3 }x+5 \end{array}}

Use the table to write a linear function that relates to y to x. PLEASEE HELP-example-1
User Erikreed
by
8.6k points