5.6k views
4 votes
What is the answer to this problem

What is the answer to this problem-example-1
User Hank X
by
7.5k points

1 Answer

0 votes


(\stackrel{x_1}{-2}~,~\stackrel{y_1}{20})\qquad (\stackrel{x_2}{-1}~,~\stackrel{y_2}{22}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{\textit{\large rise}} {\stackrel{y_2}{22}-\stackrel{y1}{20}}}{\underset{\textit{\large run}} {\underset{x_2}{-1}-\underset{x_1}{(-2)}}} \implies \cfrac{2}{-1 +2} \implies \cfrac{ 2 }{ 1 } \implies 2


\begin{array} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{20}=\stackrel{m}{ 2}(x-\stackrel{x_1}{(-2)}) \implies y -20 = 2 ( x +2) \\\\\\ y-2=2x+4\implies {\Large \begin{array}{llll} \end{array}} y=2x+6\impliedby \begin{array}c \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}

User Alexsalo
by
6.9k points