59.4k views
2 votes
How to solve (x-4)^2-9=0

User Theutz
by
7.5k points

2 Answers

6 votes

Answer:

Explanation:

(x-4)^2-9=0

Let's assume a=x-4 and b=3

We know that,


a^(2) -b^(2) =(a+b)(a-b)

substituting values a, and b in above equation we get,

(x-4+3)(x-4-3)==

(x-1)(x-7)=0

x=1,7

User Cagatay Ulubay
by
8.1k points
4 votes

Answer:


\displaystyle{x=7,1}

Explanation:

Given the equation:


\displaystyle{\left(x-4\right)^2-9=0}

Add 9 both sides:


\displaystyle{\left(x-4\right)^2-9+9=0+9}\\\\\displaystyle{\left(x-4\right)^2=9}

Square root both sides:


\displaystyle{√(\left(x-4\right)^2)=√(9)}

Cancel square root for left side and add plus-minus to right side:


\displaystyle{x-4=\pm √(9)}

Evaluate the surd of 9:


\displaystyle{x-4=\pm 3}

Add 4 both sides:


\displaystyle{x-4+4=\pm 3 +4}\\\\\displaystyle{x=\pm 3 +4}

Two solutions can be either:


\displaystyle{x=3+4} or
\displaystyle{x = -3+4}

Hence:


\displaystyle{x=7,1}

User Kronus
by
8.0k points