199k views
1 vote
use the binomial theorem to write down and simplify all the terms of the expansion (1 - 1/4 x) raised to 5 ​

User Danjah
by
7.3k points

1 Answer

4 votes

Answer:


\displaystyle 1-(5)/(4)x+(5)/(8)x^2-(5)/(32)x^3+(5)/(256)x^4-(1)/(1024)x^5

Explanation:

A binomial expansion is the result of multiplying out the brackets of a polynomial with two terms.

Use the binomial formula to expand the given expression.

Binomial series formula


\displaystyle \left(1+ax\right)^n=1+\binom{n}{1}(ax)+\binom{n}{2}(ax)^2+\binom{n}{3}(ax)^3+...+(ax)^n

where:


\displaystyle \binom{n}{r}=(n!)/(r!(n-r)!)=\phantom{l}^nC_r

Given expression:


\left(1-(1)/(4)x\right)^5

Therefore:

  • a = -1/4
  • n = 5

Substitute a = -1/4 and n = 5 into the binomial formula:


\displaystyle =1+\binom{5}{1}\left(-(1)/(4)x\right)+\binom{5}{2}\left(-(1)/(4)x\right)^2+\binom{5}{3}\left(-(1)/(4)x\right)^3+\binom{5}{4}\left(-(1)/(4)x\right)^4+\left(-(1)/(4)x\right)^5


\displaystyle =1+5\left(-(1)/(4)x\right)+10\left((1)/(16)x^2\right)+10\left(-(1)/(64)x^3\right)+5\left((1)/(256)x^4\right)+\left(-(1)/(1024)x^5\right)


\displaystyle =1-(5)/(4)x+(10)/(16)x^2-(10)/(64)x^3+(5)/(256)x^4-(1)/(1024)x^5


\displaystyle =1-(5)/(4)x+(5)/(8)x^2-(5)/(32)x^3+(5)/(256)x^4-(1)/(1024)x^5

Therefore, the expansion of (1 - ¹/₄x)⁵ is:


\displaystyle \left(1-(1)/(4)x\right)^5=1-(5)/(4)x+(5)/(8)x^2-(5)/(32)x^3+(5)/(256)x^4-(1)/(1024)x^5

Please note there was note enough room to add the binomial coefficients calculations to the main calculation, so please find them below:


\displaystyle \binom{5}{1}=(5!)/(1!(5-1)!)=(5* \diagup\!\!\!\!4*\diagup\!\!\!\!3*\diagup\!\!\!\!2*\diagup\!\!\!\!1)/(1*\diagup\!\!\!\!4*\diagup\!\!\!\!3*\diagup\!\!\!\!2*\diagup\!\!\!\!1)=(5)/(1)=5


\displaystyle \binom{5}{2}=(5!)/(2!(5-2)!)=(5* 4*\diagup\!\!\!\!3*\diagup\!\!\!\!2*\diagup\!\!\!\!1)/(2 * 1* \diagup\!\!\!\!3*\diagup\!\!\!\!2*\diagup\!\!\!\!1)=(20)/(2)=10


\displaystyle \binom{5}{3}=(5!)/(3!(5-3)!)=(5* 4*\diagup\!\!\!\!3*\diagup\!\!\!\!2*\diagup\!\!\!\!1)/(\diagup\!\!\!\!3*\diagup\!\!\!\!2*\diagup\!\!\!\!1*2 * 1*)=(20)/(2)=10


\displaystyle \binom{5}{4}=(5!)/(4!(5-4)!)=(5* \diagup\!\!\!\!4*\diagup\!\!\!\!3*\diagup\!\!\!\!2*\diagup\!\!\!\!1)/(\diagup\!\!\!\!4*\diagup\!\!\!\!3*\diagup\!\!\!\!2*\diagup\!\!\!\!1 * 1)=(5)/(1)=5

User Moishe
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories