19.2k views
1 vote
IfA+B+C = 180°, prove that:
1) cos² A + cos² B-cos² C=1-2sin A sin B sin C​

User ShawnFumo
by
7.8k points

1 Answer

4 votes

Answer: We will start by using the identity cos² A + sin² A = 1 to replace sin² A with cos² A - 1 in the expression 1 - 2sin A sin B sin C:

1 - 2sin A sin B sin C = 1 - 2sin A (cos B cos C - sin B sin C) [Using the product-to-sum formula for sin (B + C)]

= 1 - 2sin A cos B cos C + 2sin A sin B sin C

Now, we will use the identity cos (180° - x) = -cos x to replace cos C with -cos (A + B):

cos² A + cos² B - cos² C = cos² A + cos² B - cos² (A + B)

= cos² A + cos² B - (cos² A cos² B - 2cos A cos B sin A sin B)

= cos² A + cos² B - cos² A cos² B + 2cos A cos B sin A sin B

= (cos² A)(1 - cos² B) + (cos² B)(1 - cos² A) + 2cos A cos B sin A sin B

= cos² A + cos² B - cos² A cos² B + 2cos A cos B sin A sin B

Now, we will use the identity sin (A + B) = sin A cos B + cos A sin B to rewrite the last term:

cos² A + cos² B - cos² A cos² B + 2cos A cos B sin A sin B

= cos² A + cos² B - cos² A cos² B + 2sin A sin B cos A cos B

= (cos² A)(1 - cos² B) + (cos² B)(1 - cos² A) + 2sin A sin B cos A cos B

= (cos² A + cos² B - 1) + (1 - cos² A)(1 - cos² B) + 2sin A sin B cos A cos B

= 2sin² A sin² B + 2sin A sin B cos A cos B

= 2sin A sin B (sin A cos B + cos A sin B)

= 2sin A sin B sin (A + B)

= 2sin A sin B sin (180° - C) [Using A + B + C = 180°]

= -2sin A sin B sin C

Substituting this expression back into the original equation, we get:

cos² A + cos² B - cos² C = 1 - 2sin A sin B sin C

Therefore, the expression is proved.

Explanation:

User Ricardo Gomes
by
7.5k points