Answer:
Explanation:
Let's assume that the number of child tickets sold is x and the number of adult tickets sold is y.
From the problem statement, we know that:
The total number of tickets sold is 412, so x + y = 412.
The total amount of money collected from selling these tickets is 2,725.50, so 3x + 7.50y = 2,725.50.
We can use these two equations to solve for x and y. One way to do this is to use substitution:
Solve the first equation for x: x = 412 - y.
Substitute this expression for x into the second equation: 3(412 - y) + 7.50y = 2,725.50.
Simplify and solve for y: 1,236 - 3y + 7.50y = 2,725.50, so 4.50y = 1,489.50, and y = 330.
Use the first equation to find x: x = 412 - y, so x = 82.
Therefore, Kell High School sold 82 child tickets and 330 adult tickets.