Answer:
Explanation:
The graph of y=[x]-2 is the graph of the floor function shifted downward 2 units. The floor function takes any real number x and returns the greatest integer less than or equal to x. So, the graph of y=[x] is a series of horizontal steps with each step starting at an integer value of x and ending at the next integer value of x.
When we subtract 2 from the floor function, the entire graph shifts downward 2 units. So, each horizontal step of the graph of y=[x] is now 2 units lower than before.