297,880 views
6 votes
6 votes
Fill in each blank so that the resulting statement is trueFor the last box let’s put the quotient

Fill in each blank so that the resulting statement is trueFor the last box let’s put-example-1
User JackieLin
by
2.7k points

1 Answer

19 votes
19 votes

4x^2\text{ + }(19)/(3)x\text{ + 11 + }\frac{26}{3x\text{ - 3}}Step-by-step explanation:
\frac{12x^3+7x^2+14x\text{ }-7}{3x\text{ - 3}}

To fill in the blank, we need to do the long division:

Since the division involves fraction, we will be dividing the numerator and denominator by 3 so it makes it easy to divide:


\begin{gathered} \frac{12x^3+7x^2+14x\text{ }-7}{3x\text{ - 3}}=\text{ }12x^3+7x^2+14x\text{ }-7/3x\text{ - 3} \\ \frac{12x^3+7x^2+14x\text{ }-7}{3}\text{ }/(\frac{3x\text{ - 3}}{3}) \\ (12)/(3)x^3+(7)/(3)x^2+(14)/(3)x\text{ }-(7)/(3)/((3x)/(3)(-3)/(3)) \\ =\text{ 4}x^3+(7)/(3)x^2+(14)/(3)x\text{ }-(7)/(3)/(x-1) \\ =\text{ }\frac{\text{4}x^3+(7)/(3)x^2+(14)/(3)x\text{ }-(7)/(3)}{x\text{ - 1}} \end{gathered}
\begin{gathered} \frac{12x^3+7x^2+14x\text{ }-7}{3x\text{ - 3}}=4x^2\text{ + }(19)/(3)x\text{ + 11 + }\frac{(26)/(3)}{x\text{ - 1}} \\ \frac{(26)/(3)}{x\text{ - 1}}\text{ = }(26)/(3)/\text{ }(x-1)\text{ = }(26)/(3)*\text{ }(1)/(x-1) \\ \frac{(26)/(3)}{x\text{ - 1}}\text{ =}\frac{26}{3(x\text{ - 1) }}\text{ = }\frac{26}{3x\text{ - 3}} \\ \\ T\text{he result:} \\ \frac{12x^3+7x^2+14x\text{ }-7}{3x\text{ - 3}}=4x^2\text{ + }(19)/(3)x\text{ + 11 + }\frac{26}{3x\text{ - 3}} \end{gathered}

completing the statement:


\begin{gathered} \text{Begin the process by dividing }12x^3+7x^2+14x\text{ }-7\text{ by }3x\text{ - 3}, \\ which\text{ obtains }4x^2\text{ + }(19)/(3)x\text{ + 11 + }\frac{26}{3x\text{ - 3}}\text{. } \\ \text{Write this result above the quotient in the dividend} \\ \\ \text{obtains }4x^2\text{ + }(19)/(3)x\text{ + 11 as quotient and }26\text{ as remainder} \\ \end{gathered}

Fill in each blank so that the resulting statement is trueFor the last box let’s put-example-1
User Justswim
by
2.9k points