199k views
0 votes
What is the exact value of tan 2 theta in simplest radical form? Picture gives more context.

What is the exact value of tan 2 theta in simplest radical form? Picture gives more-example-1

1 Answer

7 votes

now, we know the angle is in the I Quadrant, where sine and cosine or opposite and adjacent sides are both positive, so


\sin(\theta )=\cfrac{\stackrel{opposite}{2}}{\underset{hypotenuse}{√(7)}}\hspace{5em}\textit{let's find the \underline{adjacent side}} \\\\\\ \begin{array}{llll} \textit{using the pythagorean theorem} \\\\ a^2+o^2=c^2\implies a=√(c^2 - o^2) \end{array} \qquad \begin{cases} c=\stackrel{hypotenuse}{√(7)}\\ a=adjacent\\ o=\stackrel{opposite}{2} \end{cases}


a=\pm\sqrt{ √(7^2) - 2^2}\implies a=\pm√( 7 - 4 ) \implies a=\pm√( 3 )\implies \stackrel{ I~Quadrant }{a=+√(3)} \\\\[-0.35em] ~\dotfill\\\\ \tan(\theta )=\cfrac{\stackrel{opposite}{2}}{\underset{adjacent}{√(3)}}\hspace{9em} \stackrel{\textit{Double Angle Identities}}{\tan(2\theta)=\cfrac{2\tan(\theta)}{1-\tan^2(\theta)}}


\tan(2\theta)\implies \cfrac{2\cdot (2)/(√(3))}{1-\left( (2)/(√(3)) \right)^2}\implies \cfrac{~~ (4 )/(√(3) ) ~~}{1-(4)/(3)}\implies \cfrac{~~ (4 )/(√(3) ) ~~}{(3-4)/(3)}\implies \cfrac{~~ (4 )/(√(3) ) ~~}{(-1)/(3)} \\\\\\ \cfrac{4 }{√(3) }\cdot \cfrac{3}{-1}\implies -\cfrac{4\cdot 3}{√(3)}\implies \boxed{-4√(3)}

User Tsnkff
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories