389,210 views
38 votes
38 votes
Can you please help me with the limits I need help with the graph also. The asymptotes need dotted lines

Can you please help me with the limits I need help with the graph also. The asymptotes-example-1
User Bob Mazanec
by
3.2k points

1 Answer

18 votes
18 votes

Given:


y=(2x^2-5x+2)/(x^2-4)

The vertical asymptotes, x= -2

The horizontal asymptotes y=2.

Aim:

We need to graph the function and find the end behavior.

Step-by-step explanation:

The graph of the function:

x-intercept is (0.5,0) and y-intercept is (0, -0.5)

End behavior:

Take the limit of the function:


\lim _(x\to\infty)y=\lim _(x\to\infty)(2x^2-5x+2)/(x^2-4)


\lim _(x\to\infty)y=\lim _(x\to\infty)\frac{2-(5)/(x)+(2)/(x^2)}{1^{}-(4)/(x^2)}


\lim _(x\to\infty)y=\frac{2-0+0}{1^{}-0}=2

We get


\lim _(x\to\infty)y=2\text{ }

Taking the limit to negative infinity


\lim _(x\to-\infty)y=\lim _(x\to-\infty)(2x^2-5x+2)/(x^2-4)


\lim _(x\to-\infty)y=\frac{2-0+0}{1^{}-0}=2

We get


\lim _(x\to-\infty)y=2\text{ }

Taking the limit to -2.


\lim _(x\to-2^+)y=\lim _(x\to-2^+)(2x^2-5x+2)/(x^2-4)


\lim _(x\to-2^+)y=\frac{2(-2)^2-5(-2)+2}{(-2)^2_{}-4}=(20)/(0)=\infty

We get


\lim _(x\to-2^+)y=\infty


\lim _(x\to-2^-)y=\lim _(x\to-2^-)(2x^2-5x+2)/(x^2-4)


\lim _(x\to-2^-)y=\frac{2(-2)^2-5(-2)+2}{(-2)^2_{}-4}=(20)/(0)=\infty

We get


\lim _(x\to-2^-)y=\infty

Final answer:

All limits:


\lim _(x\to\infty)y=2\text{ }


\lim _(x\to-\infty)y=2\text{ }


\lim _(x\to-2^+)y=\infty


\lim _(x\to-2^-)y=\infty

Can you please help me with the limits I need help with the graph also. The asymptotes-example-1
User John Easley
by
3.0k points