Answer:
Step-by-step explanation:
Assuming ideal gas behavior, we can use the mole fraction of O2 to calculate its partial pressure in the mixture:
Calculate the total number of moles of gas in the chamber:
n(total) = n(CO2) + n(O2) = 3.00 mol CO2 + n(O2)
Calculate the mole fraction of O2:
X(O2) = n(O2) / n(total) = n(O2) / (3.00 mol CO2 + n(O2))
Use Dalton's law of partial pressures to find the partial pressure of O2:
P(O2) = X(O2) * P(total) = X(O2) * (3.00 atm)
Use the ideal gas law to find the volume of the gas mixture:
PV = nRT
V = n(total) * RT / P(total) = (3.00 mol CO2 + n(O2)) * (0.0821 L·atm/(mol·K)) * (305 K) / (3.00 atm)
Substitute the values found in steps 2, 3, and 4 into the equation from step 3 to get the pressure of O2:
P(O2) = (n(O2) / (3.00 mol CO2 + n(O2))) * (3.00 atm) = (n(O2) / (3.00 mol CO2 + n(O2))) * (3.00 mol CO2 + n(O2)) * (0.0821 L·atm/(mol·K)) * (305 K) / ((3.00 mol CO2 + n(O2)) * 50 L)
P(O2) = 0.0415 atm
Therefore, the pressure of O2 in the chamber is 0.042 atm (rounded to 3 significant figures).