15.4k views
5 votes
4.8 * 10^24 - 7.9 * 10^25 in exponential form

User Cesarislaw
by
7.7k points

1 Answer

3 votes

Answer:

-7.42 × 10²⁵

Explanation:

Given expression:


4.8* 10^(24)-7.9 * 10^(25)

Rewrite the second exponent as (1+24):


\implies 4.8* 10^(24)-7.9 * 10^((1+24))


\textsf{Apply the exponent rule:} \quad a^(b+c)=a^b \cdot a^c


\implies 4.8* 10^(24)-7.9 * 10^1 * 10^(24)

Simplify:


\implies 4.8* 10^(24)-7.9 * 10 * 10^(24)


\implies 4.8* 10^(24)-79 * 10^(24)

Factor out the common term 10²⁴:


\implies (4.8-79)10^(24)

Carry out the subtraction inside the parentheses:


\implies -74.2 * 10^(24)

To write the answer in scientific notation
a * 10^n then 1 ≤ a < 10.

Therefore, divide -74.2 by 10, which means we need to multiply 10²⁴ by 10:


\implies -74.2 / 10 * 10^(24) * 10


\implies -7.42 * 10^(24) * 10^1


\implies -7.42 * 10^((24+1))


\implies -7.42 * 10^(25)

User Vangos
by
7.6k points